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We introduce a 'proper time' formalism to study the instability of the vacuum 
in a uniform external electric field due to particle production. This formalism 
allows us to reduce a quantum field-theoretic problem to a quantum mechanical 
one in a higher dimension. The instability results from the inverted oscillator 
structure which appears in the Hamiltonian. We show that the 'proper time' 
unitary evolution splits into two semigroups. The semigroup associated with 
decaying Gamov vectors is related to the Feynman boundary conditions for the 
Green functions and the semigroup associated with growing Gamov vectors is 
related to the Dyson boundary conditions. 

1. I N T R O D U C T I O N  

The history of  the unification o f  relativity and quantum mechanics  
began with the formulat ion of  one-par t ic le  wave equations for i r reducible  
representat ions of  the Lorentz group (K le in -Gordon ,  Dirac,  etc.). However ,  
this a t tempt  was shown to be unsuccessful ,  due mainly  to the appearance  of  
negat ive-energy solutions, which was or iginal ly  considered as a strong anom-  
aly. Quan tum field theory (QFT) arose as the solut ion o f  such diff icul t ies  
shedding light on many new results, for example ,  par t ic le  creation p roduced  
by c lass ical  fields. In f ield-theoret ic  language this effect  originates f rom the 
instabil i ty o f  the vacuum of  the mat ter  field, which pr ivi leges  pair  creat ion 
with respect  to pair  annihilat ion,  due to the nonsymmetr ica l  choice of  vacuum,  
compat ib le  with the idea of  the Dirac sea (all negat ive-energy levels are fi l led).  
Such a process,  which posed a p rob lem to the one-par t ic le  interpretat ion of  
the theory can nevertheless  be pictured as the poss ib i l i ty  of  tunneling f rom 
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negative- to positive-energy states under the influence of the potential barrier 
produced by the external field (Lifshitz and Pitaevski, 1971; Brout e t  aL ,  

1991; Brout and Parentani, 1992). This picture is extremely helpful for 
clarifying physical ideas, so we begin by explaining it in Section 2. 

The dissipative behavior of tunneling processes in nonrelativistic quan- 
tum mechanics has been extensively studied, and with this instability can be 
associated Gamow vectors, which serves as a representation of the exponential 
decay law (Bohm e t  a l . ,  1989). The aim of this work is to study the intrinsic 
instability of the particle production mechanism. However, it is not clear how 
to introduce Gamow vectors in the standard first-quantized theory nor at the 
level of second quantization. So we consider an alternative point of view given 
by consistent a first-quantized formulation of relativistic quantum mechanics 
(RQM) based on a proper time method. 2 The key idea of this formulation is to 
replace the Dirac solution to the negative energy problem by the Stueckelberg 
interpretation (Stueckelberg, 1941, 1942; Feynman, 1948, 1949a, b), i.e., to 
consider (negative-energy) particles traveling backward in time as antiparti- 
cles, introducing a fifth invariant parameter for labeling the evolution of the 
system. This formalism has the advantage that one can deal with a 'one- 
particle' configuration space of higher dimension instead of the infinite- 
dimensional problem of QFr. We discuss the main outlines of this formalism 
for charged scalar particles in Section 3; then we consider the problem of 
these particles in an external constant and homogeneous electric field (Section 
4) and then introduce rigged Hilbert spaces associated with the choice of 
the boundary conditions for the propagators (Feynman and Dyson) and the 
corresponding proper time evolution of Gamow vectors generated by a semi- 
group of unitary operators (Section 5), closely related to a subjacent upside- 
down oscillator structure. 

2. T H E  PHYSICAL P ICTURE 

Since the works of Heisenberg, Euler, and Kockel (Euler and Kockel, 
1935; Heisenberg and Euler, 1936), we know that the vacuum is not an inert 
object. In fact it behaves as a dielectric in the presence of an external electric 
field, and such an effect introduces nonlinear corrections to the Maxwell 
equations, to be discussed in Section 4. Vacuum polarization corresponds to 
a virtual pair creation and annihilation process; however actual pair creation 
can occur in the presence of external fields. Sauter was the first in estimate 

2 From the classical work of Fock (1937), Nambu ( 1950), Feynman ( 1950, 1951 ), and Schwinger 
(1951) the proper time formalism was used for computing the effective action and studying 
the problem of particle creation in external fields. In connection with this work see, for 
example, Hartle and Hawking (1976), Rumpf (1977), Rumpf and Urbantke (1978), Stephens 
(1988), Brout et al. ( 199 I), and Brout and Parentani (1992). 
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the probability of creating a pair in presence of a constant homogeneous 
electric field (Lifshitz and Pitaevskii, 1971). His reasoning was at the level 
of the semiclassical limit of a first-quantized theory. However, it is so clear 
that the simple translation of his physical picture to the intricate theoretical 
framework of quantum field theory shed light on the vacuum instability 
problem. Before discussing the Sauter derivation, let us recall the dictionary 
which allows us to translate the concepts of first quantization to QFT. 

Often, textbooks repeat that we can do relativistic quantum mechanics 
of the Klein-Gordon field consistently and we can go straightforwardly to 
quantum field theory. Certainly, this is not true. In this position we see a 
theoretical prejudice against negative energies and indefinite metric spaces. 
The first obstacle was cleared up by Stueckelberg (194 l, 1942) and Feynman 
(1948, 1949a, b) and a comprehensive review of the second can be found in 
the work of Feshbach and Villars (1958). Now let us concentrate in the 
Stueckelberg and Feynman ideas using the classical picture derived from the 
Klein-Gordon equation (h = c = 1) 

(D~D~ + m2)~ = 0 (1) 

where D~ = 0~ + ieA~ is the gauge-covariant derivative and ~(x) is the 
complex scalar field. Using the WKB approximation in (1) 

t~(X)wK~ = ae -is~x~ (2) 

we obtain the Hamilton-Jacobi equation in the classical limit 

(O~S - eA~)(O~S - eA ~') = m 2 (3) 

where S is identified with the classical action and its gradient with the 
canonical momentum 

p~, = O~,S (4) 

Equation (3) is the mass-shell condition for spinless particles and it is equiva- 
lent to the proper time velocity constraint ( 'q~ = diag{ + 1, - 1, - 1, - 1 }) 

dx~ dr  v 
- 1 ( 5 )  

"q"~ ds ds 

due to the proportionality between the velocity and the kinematical momentum 
"rr~ = p~ - eA~ 

dx~" 
m ~ = "rr~ (6) 

The essence of the Stueckelberg-Feynman interpretation for antiparticles 
rests on a fundamental symmetry which appears in the equations of motion 
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of charged particles when we reexpress them as functions of the proper time. 
Then we can see from equation (3) and (6) that the proper time reversal of 
the motion (which inverts the four-velocity, the action, and the canonical 
momenta) is equivalent to a charge conjugation in these equations. Then 
classical motions in which particles go backward in coordinate time (dx~ 
ds < 0), negative-kinetic-energy states according to equation (6), can be 
reinterpreted as charge-conjugated particles (antiparticles) going forward in 
time. It is important to remark that our argument can be extrapolated to the 
semiclassical level. In fact, we see from the WKB wave function that the 
operation which conjugates the charge in the Klein-Gordon equation ( the 
complex conjugation of the wave function) is equivalent to the operation 
which reverses the motion in the proper time (the inversion of the action). 
However, a pure quantum explanation of this fundamental symmetry requires 
the PVI" we develop in Section 3, in which the concept of proper time is 
introduced at the quantum level. At the moment we only use the fact that 
the sign of the kinetic energy is the gauge-invariant quantity which classifies 
particle and antiparticle states. 

Standard QFT is nothing else than the second quantization (many-particle 
theory) after replacing the level of the natural vacuum (all positive-kinetic- 
energy states unfilled) by the notion of a vacuum which rest on Dirac sea 
of fermions (all negative-kinetic-energy states filled). Therefore pair creation 
in field-theoretic language (a positive-kinetic-energy state plus a hole in the 
sea) corresponds to a transition from a negative-kinetic-energy state to a 
positive one in the first-quantized theory. Note that the charge is also negative 
in a negative-kinetic-energy state, in such a way that it leaves a positive 
charged hole, in field-theoretic language. It becomes positive when we reverse 
the arrow of time according to the Stueckelberg-Feynman interpretation. 

With this ideas in mind, we follow the Sauter semiclassical argument. 
Suppose that we have a homogenous constant electric field E = Ee3. Then 
the classical expression for a relativistic charged particle of total energy P0 is 

P o =  -~ /P2  + m 2 + eEx 3 (7) 

where we have assumed that the kinetic energy is initially negative and the 
charge is - e  (e > 0). Suppose that we have such an incoming particle (the 
outgoing antiparticle in field-theoretic language) in the positive direction of 
the coordinate x 3 (p = pe3). We see that it decelerates in the presence of the 
electric field in such a way that the kinetic term in (7) decreases as the 
potential energy increases. There is a turning point a = (P0 - m)/eE at 
the coordinate x 3 for this classical particle. But, quantum mechanically, the 
momentum p can become imaginary (p = ik), allowing the tunneling of this 
particle through the barrier. Inside the barrier we have the dispersion relation 
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k = ~ / m  2 --  (Po --  eEx3)  2 (8) 

for the semiclassical wave associated with the particle. On the other side of 
the barrier, we assume that the dispersion relation is 

Po = + ~ / P 2  + m 2 + e E x  3 (9) 

for the outgoing wave. It corresponds to a classical particle of positive kinetic 
energy, which begins its movement at the point b = (P0 - re ) l eE .  

We can estimate the probability of crossing the barrier using the Gamow 
formula derived from the WKB approximation 

w = A e x p ( - 2  k(x 3) dx 3) (10) 

where A is an undefined proportionality constant. Evaluating the integral 
[t = (Po - eE-r~) Ira] 

fi ' m 2 f+- 1 ,;rm 2 
- - -  , / 1  - t z d t  - k ( x 3 )  dx3 = e E  i 2 e E  

we finally have 

w = A exp \ e E ]  (11) 

In Section 4 we will see that the exact Schwinger calculation can be fitted 
by a Sauter expression upon choosing A = e2E2/8"rr 3. But the merit of this 
heuristic derivation lies in its physical picture. The vacuum of field theory 
(the Dirac sea) in presence of an electric external field is like an infinite 
unstable nucleus which disintegrates by nucleon emission (our first-quantized 
negative-energy states going through the barrier). Another interesting picture 
can be traced at the classical level by solving the proper time equations of 
motion (Garcia Alvarez e t  al . ,  1997) (Lorentz force law) 

d Z x ~  - e F ~  v dxv  

d s  z m d s  

For the case of constant electric field discussed above, adequately choosing 
the initial conditions, we obtain the hyperbolic trajectories 

Usually, in textbooks on electrodynamics, one finds only one of the 
branches of the hyperbola, depending on the sign of the charge (e.g., Bredov 
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et al. ,  1984). In this picture both particles and antiparticles evolve in the 
ordinary direction of coordinate t ime) However, for a given charge the two 
solutions follow from the equations of motion in proper time (which is 
analogous to what happens with the relativistic wave equations, which admit 
both positive- and negative-energy solutions). Moreover, according to the 
Stueckelberg and Feynman interpretation, one branch corresponds to the 
particle and the other to the antiparticle. Now, let us compare the natural 
length scale which appears in the classical problem (the minimal separation 
between the two branches of the hyperbola, 2 m / eE )  with the quantum scale 
of the Compton wavelength (l/m) given by the uncertainty principle. We see 
that when these scales have the same order, particle and antiparticle trajectories 
overlap, increasing the probability of creating a pair. In this case the strength 
of the electric field must be of the order E ~ e /2m 2 according to the Sauter 
estimation for the tunneling process. 

Closing this section, we note that our initial vacuum is unstable under 
the pair creation process and not under pair annihilation. This is because we 
have filled all negative-energy states. In Section 3 we will see that this is 
related to the analytical structure of the Feynman propagator. 

3. THE PROPER TIME FORMALISM FOR THE CHARGE 
SCALAR FIELD 

In Section 2 we saw that proper time can be introduced in the standard 
formulation only at the semiclassical level. The lack of such an invariant 
evolution parameter is the main difficulty in reconciling the antagonistic 
formalisms of quantum mechanics and the theory of relativity (Gaioli and 
Garcia Alvarez, 1994). In fact, while relativity deals with the space-time 
coordinates on an equal footing, quantum mechanics privileges an external 
absolute parameter to label the evolution of the state of the system. Therefore, 
in the second case, "time" should have the properties of a c-number, unlike 
in the first case, where, since the spatial coordinates are raised to the status 
of operators, Lorentz transformations should impose this character on the 
temporal coordinate as well. Thus, this dual role of "time" generates trouble 
in RQM. This is basically why a one-particle theory in the usual formulation 
of RQM runs into several conceptual difficulties. 

In the 1940s a PTF was developed for a possible unification between 
special relativity and quantum mechanics within the framework of a consistent 
one-particle theory. 4 However, the price paid for the PFT was giving up the 

3This corresponds to the standard interpretation of QFT, which in the canonical formulation 
uses the coordinate time as evolution parameter. 

4See Fanchi (1993) and Aparicio et al. (1995a, b) for a review of different proposals. 
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concept of a definite mass state. In fact, suppose that we want to develop a 
relativistic classical theory in an explicit covariant way, putting the spatial 
coordinates and time on the same footing. We immediately notice that the 
Poisson bracket 

{x ~, p"} = -Xl ~ 

is incompatible with the classical mass constraint 

pWpw = m 2 

(12) 

(13) 

So the classical mass constraint (13) must be removed from the PTF, although 
nevertheless the standard RQM is recovered on-shell. Notice also that the 
Poincar4 algebra must be enlarged to contain relation (12). Among the differ- 
ent extensions of the Poincar6 group, whose algebra includes the canonical 
commutation relation corresponding to (12), the five-dimensional Galilei 
group (Aghassi e t  a l . ,  1970) 

"r '-" ~'r + 13 

x ~ = L ~ x  ~ + a ~ (Poincar6) 

is the alternative most frequently used in the literature) We consider this 
formulation in this work. 

Actually the parameter "r, which gives the name to the formalism, is a 
p r i o r i  independent of the classical proper time, but it can be related to it in 
the classical limit on the mass shell. In the case of the Galilean version of 
PTF, this parameter is nothing else than the parameter of the generalized 
Galilean boost, and it plays the role of  a Newtonian time (Horwitz and Piron, 
1973; Sonego, 1991). The temporal coordinate has a different status, and it 
is promoted to the rank of operator in accordance with the classical Poisson 
bracket (12). This dissociation of roles solves the conflict exposed above. 
Of course, the notions of simultaneity and causality are correspond to Newton- 
ian time, but standard relativistic notions in coordinate time are reobtained 
on shell [e.g., we will see that the retarded (causal) propagator of the PFI" 
on-shell is reduced to the Feynman one]. 

In this way the formalism closely copies the general outlines of nonrela- 
tivistic quantum mechanics, furnishing the theory with a well-known structure. 
Let us outline it for the case of the spinless relativistic point particle. 

5The de Sitter alternative is discussed in Garcia Alvarez and Gaioli (1997). 
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Let { Ix ~) } (Ix = 0, 1, 2 , 3 )  be the basis of localized states of the position 
operator x ~ for the charge of the system. This basis spans a linear space 
endowed with a scalar product, 

(~ lq t )  = f d4x ,~*(x~)qZ(x~) ( 14) 

satisfying the normalization and completeness conditions 

(x~ry ~) = 5(x ~ - y~'), f d 4 xlxV')(xV'[ = 1 

In this coordinate representation the state of the system is represented 
by a wave function belonging to a four-dimensional Hilbert space, defined on 
the space-time manifold. The position operator x ~' and its canonical conjugate 
variable, the momentum p~, satisfy 

and are given by 

[x ~', p~] = -i"q ~ (15) 

(x lp~ l~)  = iO~'~It(x) 

(xtx~'l~) = x~*(x) 

[In equation (15), - i  was chosen to preserve the sign in the ordinary relations 
for the spatial part.] 

In the SchrUdinger picture, 

[axl, t(X ix, ,'1-)12 

represents the probability density for the system to be at the space-time point 
x ~ at "instant" 1". The wave function evolves with a Schr6dinger equation, 

where 

d 
- i  ~ I~('r)) = Hl~( 'r))  

H -  "qr 

2M 

(16) 

is a super-Hamiltonian and M a super-mass parameter. 
The time-reversal operator in the Wigner sense coincides with the charge 

conjugation operator 

C ~ ( x ,  "r) = ~*(x,  - ' r )  (17) 
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This fact naturally introduces the Stueckelberg-Feynman interpretation into 
the formalism. Notice that from the Heisenberg equation of motion we have 

d x  p- q-r p- 

d,r M 

so, as mentioned above, at the classical level on the mass shell the parameter 
,r is proportional to the classical proper time 

From now on, we rescale the time, writing s = (l/2M)-r, using the 
Schwinger notation, which is more familiar in the literature, s must not be 
confused with the classical proper time. The Schrrdinger equation now reads 

�9 oqJ(x ,  s )  
t O ~  - D~D~(x '  s) (18) 

In this case the super-Hamiltonian is rescaled to 

H = "qCvw~'rrv = "IT 2 

The super-Hamiltonian as well as position and momentum operators are 
Hermitian in the inner product (14). 

A stationary solution of (16) is 

qd'(X', S) = eimZslllm 2(X p') 

where dd,,z(x~ ) is a solution of the generalized Klein-Gordon equation 

O2ddm2(X p') -t- m21]Jm2(X p') -~- 0 

which is reinterpreted as an eigenvalue equation (the mass eigenvalue m 2 is 
real, but not restricted a priori to be positive). 

We can see that the theory developed is formally identical to ordinary 
quantum mechanics. Then, all of what we have learned from this theory can 
be rewritten in the PTF. For example, let us consider the resolvent of  the 
free Hamiltonian operator 

1 1 
R ( z )  - - -  

H - z  p 2 - z  

We see that R(z) is analytic in all the complex plane except for a cut along 
the positive real axis. R(z) is the extension to the complex plane of the 
inhomogeneous Green function of the Klein-Gordon equation 

(pZ __ m2)G(m 2) = 1 
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The limiting values of R(z) approaching the positive real axis define two 
analytic functions in the lower (upper) half-plane. These functions are those 
defined in QFT by adding a negative (positive) small imaginary part to m z 
in order to give sense to the formal expression 

1 
Gz(m2) p2 _ m z + it  ' ~ > 0 

In our notation, plus and minus correspond to the Feynman and Dyson 
propagators, respectively, 

GF~D)(x, y) = (xlG~_ (mZ)ly) 

These functions can be analytically continued across the cut to the second 
Riemann sheet on the upper (lower) complex half-plane, defining two analytic 
functions for all z ~ C. 

As is well known, the Feynman (Dyson) propagator can be obtained in 
the first-quantized theory as the inhomogeneous Klein-Gordon Green func- 
tion which propagates positive (negative)- and negative (positive)-energy 
states forward (backward) and backward (forward) in time, respectively. In 
the language of  QFF, the Feynman propagator can be obtained as the mean 
value in the vacuum state of the time-ordered product of field operators 

GF(x, y) = i(010(x ~ --yO)+,,,e(x)~Jtm2(y) + 0(y ~  x0)t~2(y)~,,2(x)10) 

(we can write an analogous expression for the Dyson propagator, defining a 
vacuum in which all positive-energy states are filled). 

As we will see, Feynman and Dyson boundary conditions also have an 
interpretation in the off-shell theory. The two limiting values of  R(z) are 
connected with the retarded and advanced Green functions of the Schrrdinger 
equation. In fact, applying the formal identity 

1 - -7- i I ~176 O(+s)e i(a+ir ds 
a + ir 

for a = H - m 2, we see that 

_ 1 - + i (~ O(+-s)e is<u-mz• ds (19) 
G-z_ ( m  2)  H - -  m 2 "4- i t  - 

3-oo 

Equation (19) in coordinate representation reads 

= (2 G~[x(s) ,  y(O)]e -sO"2+-i~) ds Gv~o)(x, Y) (20) 
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with 

G._[x(s), y(0)] = -~ i O(+_s)(xteiSnly} 

representing the retarded and advanced solutions of the Schrrdinger equation 
of the off-shell theory, Equation (20) is the analogue of the relation between 
time-dependent and time-independent Green functions in nonrelativistic quan- 
tum mechanics. The Fourier integral in s selects a particular value of m 2 of 
the indefinite mass theory, and tell us that the Feynman (Dyson) propagator is 
the time-independent Green function corresponding to the retarded (advanced) 
one in the off-shell theory. 

Summarizing, we have seen that (a) the analytical continuation of the 
resolvent to the upper complex half-plane in the second sheet, (b) the boundary 
conditions of the on-shell Green function according to the Stueckelberg 
interpretation, (c) the choice of the vacuum according to the Dirac sea idea, 
and (d) the causal (retarded) boundary conditions of the Green function of 
the off-shell theory are different aspects of the same thing. In the next sections 
we show that in the case of the external field problem one of the two possible 
analytical continuations of the resolvent (the one associated with the Feynman 
boundary conditions) corresponds to decaying Gamow vectors in proper time, 
which are related to the instability of the vacuum of field theory under 
pair creation. 

4. THE HEISENBERG-EULER EFFECTIVE ACTION AND 
PARTICLE CREATION 

The effective action Serf due to the interaction of the vacuum current 
with the external field such that 

~Seff ~-- ( dx4 (01J~I0)~A~ 
J l 

leads to the Heisenberg-Euler corrections of the Maxwell equations. As 
shown by Schwinger (1951), it can be obtained in the proper time formalism 
by computing 

&ff = [ Leff(x) dx 4 
) 

where 

Leer(X) = - i  t ~ __ds (xleittslx)e_i(mZ_i~)s + C(x) (21) 
J0 S 

is the effective Lagrangian and C(x) is an additive constant determined in 
such a way that Lea(X) = 0 in the absence of external fields. We see from 
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equation (21) that we have again reduced a field-theoretic problem (the 
calculation of  the effective action) to a quantum mechanical one in a higher 
dimension. In fact, now our problem consists in evaluating the matrix element 
{xleimlx). Moreover, we can reinterpret it as the persistence amplitude of  the 
off-shell particle to remain at the point x ~ of the space-time, and Lete(x) as 
the on-shell correlate of this amplitude per unit 'proper time.' 

The matrix element (xleiHSlx) can be evaluated by path integrals or, in 
the Heisenberg picture of the canonical formulation, by means of  an ingenious 
procedure developed by Schwinger departing from the integration of  the 
Heisenberg equations of motion. Here we solve the eingenvalue problem in 
the SchrOdinger picture. The reason is that through this procedure it is clearer 
that the proper time evolution splits into two semigroups. 

Let us consider again the problem of  a homogeneous and constant 
electric field. Using the conventions of Section 3, the super-Hamiltonian reads 

H =  w 2 = (P0 + eEx3) 2 - p z - p z  l _p~ (22) 

We see that it can be split into the Hamiltonian of an upside-down harmonic 
oscillator plus the Hamiltonian of two free particles in the coordinates of  the 
plane perpendicular to the electric field 

H = - - 

Ho,c = P3 + (ieE)2( x~ + po/eE) (23) 

The eingenvalue problem for the free-particle part has the standard plane- 
wave solution (XlxalplP2). The inverted harmonic oscillator has pure imaginary 
frequency ~o/2 = +ieE. In Section 5 we see in detail that the two signs 
correspond to the splitting of the proper time evolution of this unstable system 
toward the future and toward the past, respectively. The positive imaginary 
solution of the eingenvalue problem, 

(x~ = ieE(n + l)(x~ (24) 

corresponds to the generalized eingenstate 

(x~ n) = eip~176 + po/eE) (25) 

representing a decaying Gamow vector 

Ipon(s)) = e-eE("+ l"a)Slpon) (26) 

for s > 0. 6 

6The positive frequency choice corresponds to positive poles of R(z) in the second sheet of 
the upper half-plane. This analytical extension of the resolvent operator corresponds to the 
retarded (causal) evolution propagator in proper time. Then decaying Gamow vectors are only 
defined for positive times. 
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Using mass  'e ingenstates '  Iplpz, pon) of  H, we can easily evaluate the 
matrix element  (see Appendix)  

(xleimlx) = (4"~s) 2 Lsinh(eEs)J 

Expanding it in power  series of  the coupling constant 

i [ (eEs)2 + 7 ] 
(xleimlx) = (4.~s) 2 1 ~ -  3 - ~  (eEs)4 + "'" 

and replacing the third term in the integral, we finally have 

fo~ Le~(x) = "  7 e4E 4 se_i(m2_ie)Sds . . . .  + 7 e4E 4 
360 (47r) z 360 m 4 

which coincides with the expression obtained by Schwinger  (1951) for the 
Heisenberg-Euler  correction in the spinless case. 

Now let us discuss the particle creation process associated with the 
imaginary part of  

1 f l  ~ eEs e -i(m2-i~)s ds + C(x) 
Leff(x) - (4,rr) 2 s 3 sinh(eEs) 

We can analytically continue the integrand to the lower half-plane; then the 
integral along the posit ive real axis becomes  

1 (,. eE 
L ~ Z )  = (4"rr)/~, o zz sinh(eEz) e-"'z: dz + C(x) 

where F0 is a path with the same endpoints.  The integrand has poles in z+. 
= +-in'rr/eE. 7 Using the residues theorem, we can rewrite L,n(z) as 

1 fr  eE e -im2z dz + C(x) - 2"rri Res (z_0  
L ~ z )  = (4,rr) 2 -i z2 sinh(eEz) 

where the path F-1 has the same endpoints as F0 in such a way that the 
closed counterclockwise contour  F_I tO ( - F 0 )  encircles the first pole in the 

7Note also that the resolvent 

1 
R(z) ~r 2 - z 

has a cut on the positive real axis and poles z, = +-ieE(n + 1/2) in the positive imaginary 
one. Since the effective Lagrangian can be written as L~tt(z) = - i ( x l  In R(z)lx} + C(x),  the 
poles of the resolvent are related to the poles of the integrand. 
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negative imaginary axis, z-l = -i'rr/eE. The probability of creating one pair s 
per space-time volume is given by 

w(x) = I m  L~rr(X) = -2-rr Res(z_t) 

Thus we finally have 

(eE)  2 [ Trm2'~ 
w(x) : ~ e x p ~ - - ~ - )  (27) 

according to Sauter's estimation. 

5. GAMOW VECTORS ASSOCIATED WITH PARTICLE 
CREATION BY AN EXTERNAL FIELD 

In Section 4 we saw that an inverted harmonic oscillator structure appears 
in the Hamiltonian. We claim that the instability of the vacuum in the field- 
theoretic language has its correlate in this simple unstable system at the level 
of the off-shell theory. We noticed that this inverted oscillator has a pure 
imaginary frequency o~ = +_-ieE (antioscillator). This leads to a 'complex 
eigenvalue' problem, which requires some technical points that we discuss 
in this section. 

We can solve the eingenvalue problem for this system from the solutions 
of the harmonic oscillator, obtaining two sets of 'complex eigenvalues' (which 
do not take part of the spectrum of Ho~c) 

(x~ = ieE(n + ~)(x~ (28) 

where 

(x~ = - i e E ( n + l ) ( x ~  

(x~ n) = eip~176 + pdeE) 

(29) 

(30) 

(x~ = e i e ~ ( x  3 + poleE) (31) 

where % and 9,, contain Herrnite polynomials of complex argument. The 
'eigenvalues' correspond to complex poles z,, = +_-ieE(n + 1/2) along the 

8The contribution corresponding to creating two pairs can be obtained taking a path which 
encircles the pole z-> and so on. 
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positive/negative imaginary axis of the resolvent operator R(z). It was demon- 
strated (Castagnino et al., 1997) that the corresponding 'eigenvectors' form 
a biorthogonal set, i.e., 

(Poonlp'om) = a(po - p 'o)~Onm in do+ 

(ponlpo"~m) = a(po - p'o)a,,~ in do_ 

(32) 

(33) 

dpo ~. Ipon)(p"~l = I in do. (34) 
n=O 

I dpo ~. Lp'~)(ponl = 1 in do_ (35) 
n=O 

The eigenvectors (30) and (31) correspond to generalized eigenvectors of 
Ho~ in adequate rigged Hilbert spaces: 

(Ho~cr (dplHo~clpon)= ieE(n + l)(~lpo n) (36) 

(Hos~t~ [fi"~)= (+lHo~lp"~) = -ieE(n+l)(olp"~) (37) 

where ~b e do+ and r e dO_, since H~'~ = Hos~ is continuous on do_+. The 
test spaces do+ and do_ are defined by (Castagnino et al., 1997) 

do+ = { r  ~ 50/(vtr ~ ~ }  = { r  ~ 50/(u1r ~ ~c} (38) 

do- = {r ~ 501(vide) ~ ~}  = {r ~ 50/(u1r e s  (39) 

where ~ is the subset of Schwarz functions (5 ~ of compact support and 
is the subset of Schwarz integer functions of exponential order, restricted to 
the real axis. {Iv)} and {lu)} are two representations constructed with the 
generalized eigenvectors of the operators 

V ~--- - ~  ~- X 3 + (40) 

u = - ~  x3 + (41) 
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which are the analogues of the creation and annihilation operators for the 
harmonic oscillator. Therefore we can construct a pair of rigged Hilbert spaces: 

di)+ C ,~2(R) C (I)x+ (42) 

where ~2(R) is a Hilbert space, qbz are dense subsets of ~2(R) with their 
own complete nuclear topology, and ~ ~ are the dual spaces of ~_+. The 
evolution operator U = e it4s is continuous on @+ and such that U?qb+ C 
qb_+, for s~0 only. Thus we can obtain the evolution in s of the pair of Gamow 
vectors as 

Ipon(s)) = e-eE~n+l/2)Slpon) for s > 0 (43) 

Ipon(s)) = eee~n+m)Slpo n) for s < 0 (44) 

which are functionals in cI) • _+, respectively. We see that the pair of Gamow 
vectors represent a decaying state toward the future and a growing state from 
the past, respectively. These Gamow vectors are related via the s-time reversal 
Wigner operator K, 9 since it can be proved (Castagnino et al., 1997) that K: 
qbz ---> qb7_ ' and therefore 

• (45) K: ~ --> ~-v- 

We have seen that the unitary temporal evolution splits into two semi- 
groups. Let us interpret the physical meaning of such a splitting. Coming 
back to the off-shell propagator, let us evaluate it for the Hamiltonian (22): 

G+(x, y, s) 

= O(s)(x le iHsly)  

= O(s) f dpl f dpz f dpo ~=o (Xleimlplp2pon)(plp2pon,y ) (46) 

where we have used the completeness relation (34), since their generalized 
eigenvectors are well defined only for s > 0. It shows that the retarded 
condition in time s (Feynman prescription) is satisfied only for Gamow 
vectors decaying toward the future. Similarly, the Dyson prescription is related 
to growing Gamow vectors. 

We can conclude that the choice of  Feynman or Dyson prescriptions is 
a priori a conventional matter when we consider the whole universe (or a 

9The Wigner operator K is such that conjugates the wave function of the Klein-Gordon equation 
and coincides with the charge conjugation operator for this equation. The s-reversal operation 
of (18) is given by the operator S such that S ~ ( x ,  s) = KXlt(x, - s ) ,  which coincides with the 
generalization of the charge conjugation operation of (18). 
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closed isolated system). That is, for example, the Feynman boundary condition 
for which particles propagate toward the future and antiparticles toward the 
past in coordinate time is correlated with the Gamow vectors decaying toward 
the future in proper time. Then we have an unavoidable proper time asymme- 
try, coming from a proper time symmetrical theory which splits the dynamical 
evolution into two semigroups. But once we have made the Feynman choice, 
'proper time' asymmetry is a substantial thing providing a privileged direction 
of time, the one in which Gamow vectors decay. The Dyson choice only leads 
to a specular world, in which we can be living just now, if we conventionally 
interchange the role of past and future. 

APPENDIX 

The matrix element (xleiHslx) can be factorized as the matrix element 
for two free particles and an upside-down harmonic oscillator 

(X ! le-i(Pl)ZS[xt)(x21e-i(Pz)ZSlx2)(xOx31ei(nosc)SlxOx3 ) 

The first factor gives a contribution 

(X 1 le-i(pl)Zs[x 1) = f ~  (Xl Ipl)(ple-i<PO2.qxt) dp, 

= G e -i(vt)2" dp, = G 

with the same factor for the second one. The third factor can be computed 
in a similar way, 

(xOx3lei(Hose)S IX0X 3) 

= ~ f~= (x~176176 3) dpo 

= ~ f~  e-'E(n+t/2)s~pn(x3 + poteE)~-'~(x 3 + po/eE)dpo 

= 2"rre--EE ~ e_ee(,,+,~), L ~",(u)q~n(u)du 



2388 Gaioli, Garcia-Alvarez, and Castagnino 

Collect ing our part ial  results,  we f inal ly have 

i Fe , 1 
(xleimlx) - (4~s)  2 [ s inh(eEs)J 
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